t
N - - t .
~1 —
— g l P =
)

-~ - -
-~ ~ {
~ ~
\ o
rr) \
\ ~
By

Human-Compute

Interaction Design

COGS120/CSE170 - “Intro. HCI” ¥

Instructor: Philip Guo

Lab 6 - Connecting frontend and backend without page reloads (2016-11-03)

by Michael Bernstein, Scott Klemmer, and Philip Guo

So far: to fetch new data
from the server, your web
browser must make a
separate URL request and

reload the entire webpage

Today’s goal: to send and
receive data from the
server without reloading
your entire webpage

AJAX
GET and POST

Lab roadmap
HTML for page

structure: Lab |
CSS for styling: ¥ Bootstrap
Lab 2

Frontend

AN JavaScrlpt for

&&;]
development - taraction: Lab 3 & jaQuervy

AJAX for updates
w/out reload: Lab 6 A{jAX

Portfolio website

Express server-side web

Server-side Backend _—" framework for Node.js:
development | ab 4 @XD(@SS

n
\ Data storage (fUtU re) . m()nngcDB

Why do this?

GO 8].6 “ s=x stanfordhci@gm...

Gmail ~ @

COMPOSE ka Primary *= Social ¥ Promotions

Inbox
Starred
Important
Chats

Sent Mail Your primary tab is empty.
M Nothing to see here.

Search people...

Ron Yeh

Gmall Inbox update

Why do this?

Use at least one lowercase letter, one numeral, and
seven characters.

Grthub username checking

Why do this?

Google |n

Google instant search

“Hello World” fetch-data-
without-reloading example

Get A Project

First observation: there is no project
data embedded in the webpage itself

‘No JSON object with the project data in introHCI.js
‘No hidden <div>s in index.htm|

‘No data rendered using index.handlebars

|0

What happens when we click the button!

$("#testjs").click(function(e) {
$.get("/project/random"”, addProject);

}

function addProject(result) {

/ Get A Project

What'’s at the URL in the $.get () function?

& C | localhost:3000/project/random S (D

id: 2,

title: "Needfinding',

date: "January 16",

summary: <p>As Yogli Berra said, you can observe a lot just by watching.
Watching how people do things i1s a great way to learn their goals and
values, and come up with design insight. We call this needfinding.

This assignment helps you train your eyes and ears to come up with design
ideas. Your goal is to uncover user needs, breakdowns, clever hacks, and

opportunities for improvement.</p>",
image:
"http://developertodesigner.files.wordpress.com/2012/11/observing. jpg"

(keep reloading, and you'll see different random results)

What happens with that |[SON data fetched from
http://localhost:3000/project/random!?

$("#testjs").click(function(e) {
$.get("/project/random", addProject);
\Callback function:

Just the function name!

function addProject(result) { addProject not
addProject(result)

|3

The callback function uses the JSON result

JSON result properties: id, image, title, date, summary

function addProject(result) {
console.log(result);
var projectHTML = '" +

+ result|["image’'] +
'<p>" + result]['title'] + '</p>' +
'<p><small>"' + result|['date'] + ‘</small></p>";

'<1mg src= class="1img">" +

$("#project-container”™).html(projectHTML);
$("#project-description”).html(result['summary']);

|4

web browser

$.get(<URL>, fo0);

Here we are asking the server to

function foo(result) { give us the data at so that
console.log(result); we can print it to the console.
The $.get function requests the
} server for the data at .When

we get a successful response, the
foo callback function is called with
data as its parameter (result).

|5

How did the server return that JSON?

see lab6/routes/project.js

var projects = require('../projects.json');

exports.projectInfo = function(req, res) {

var projectID = reqg.params.id;
if (projectID == "random") {

projectID = Math.floor(Math.random() * projects.length) + 1;
} else {

projectID = parselnt(projectID);
}

var project = projects|[projectID-1]; // first project has index ©
res.json(project); // send JSON back to browser

concepts

The technique we just
introduced is called “AJAX”

|7

Asking the server for data without leaving
the current webpage

|. Javascript in web
browser makes a request $.get(url)

function {

res.json();

¥
1
‘property’: ‘value’, 2. Server
‘property2’: ‘value2’ returns JSON data
3. Javascript } (not an HTML webpage)

callback function runs

and acts on the data
|8

Why call it AJAX

Asynchronous
Javascript

And

XML

Tlt used to transfer XML back in the stone age (~2005), but now we use |SON

19

“Asynchronous’?

*The request to the server can take time, so your code
keeps running

*Your callback function is called when the request is done

THIS ISA CORE CONCEPT IN WEB PROGRAMMING,
BOTH FRONTEND AND BACKEND. It’s very very very

important, and different than most sorts of programming
that beginners learn. It can take a while to wrap your head

around.

20

Asynchronous means code keeps running

var data;
$(‘#btn’).click(function() {

$(“#wait’).show();

$.get(“/data”, callbackFn);
console.log(‘AJAX’);

} I:»
function callbackFn(result) { (
$(‘#wait’).hide(); ‘message’: ‘hello’
data = result| ‘message’] + “!”; J
$(‘body’).append(data);
Console:“"AJAX”

}

Assuming that the system waits: a bug!

var data;
$(‘“#btn’).click(function() {

» $(“#wait’).show();

$.get(“/data”, callbackFn);
console.log(‘AJAX’);

$(‘#wait’).hide();
$(‘body’).append(data);
s {
‘message’: ‘hello!”’
function callbackFn(result) {)
data = result| ‘message’] + “I!7; COHSO'G'“AJAX”

}

concepts

Sending data to the server

So far: all data contained in the URL

Example:
http://localhost:3000/profile/mbernst

|

Data (argument) in URL

$.get(“/profile/mbernst’)

24

What if we have a lot of data to send?

Your Message

From: do_not_reply@precisionconference.com

To: msb@cs.stanford.edu

Subject: cscw 2014 papers submission 239

Message: she should have died hereafter:
There would have been a time for such a word.
Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing. — Macbeth (Act 5, Scene 5, lines 17-28)|

This much data does not fit inside a URL in most
modern browsers (plus, it’s super messy even if it fits)

25

Solution: send |SON using $.post()

$.post(“/user/sendMessage™,

1

“emaill”: “do_not_reply@precisioncontference.com”,
“email2”: “msb@cs.stanford.edu”,

“emall-content”: “She should have died hereafter;
There would have been a time for such a
word. Tomorrow, and tomorrow, and
tomorrow, Creeps 1n this petty pace from
day to day, To the last syllable of

}s

callbackFunction); 2%

$.get() $.post()

‘When you are not impacting -VWhen the application takes

the database or application action based on the data
-e.g., Get me this data” -e.g., Post this to Facebook™
*All data goes in URL ‘No data in the URL

Good because you can ‘Data sent via JSON along
bookmark and send URL with the request

‘But limited data size due to ‘No size limit on data
limited URL length in web

browsers

Note: these are both part of the jQuery library
(remember the $ dollar sign)

27

In app.js on the node.|s server...

a GET route looks like

app.get(‘someURL/:somelId’, controller.get action);

a POST route looks like

app.post(‘someURL/:somelId’, controller.put action);

warning: a POST request sent to a GE [route URL will be ignored

(Note: these route URLs are sometimes called “endpoints™)

28

practice

Your turn: time to make
some AJAX requests!

Our goal: dynamically load project info

| localhost:3000 Wl =

k

Waiting in Line

Establishing secure connection...

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |

© W <topframe> v <page context> v

>

Get the starter code

‘Fork the repository: https://github.com/pgbovine/labé

‘git clone your forked repository into the introHCI
directory

31

Start node.js

‘Make sure you're in the lab6 directory, then: node app.js

32

&

C | localhost:3000

Michael Bernstein

human-computer interaction - social computing - crowdsourcing

Colors!

Projects

Open labé/public/js/introHCl.js

VVe have added a click listener to the project previews

function addProjectDetails(e) {

// Prevent following the 1link
e.preventDefault();

// Get the div ID, e.g., "project3”
var projectID = $(this).closest('.project').attr('id");

// get rid of 'project’' from the front of the id 'project3
var idNumber = projectID.substr('project’'.length);

console.log("User clicked on project " + idNumber);

34

Test the project detail endpoint URL in

your browser

http://localhost:3000/project/|
http://localhost:3000/project/2
http://localhost:3000/project/3

C | localhost:3000/project/1

{
id: 2,
title: "Needfinding",
date: "January 16",

summary: '<p>As Yogl Berra said, you can observe a lot just by watching. Watching how people do things is a great
way to learn their goals and values, and come up with design insight. We call this needfinding. This
assignment helps you train your eyes and ears to come up with design ideas. Your goal is to uncover user needs,
breakdowns, clever hacks, and opportunities for improvement.</p>",

image: "http://developertodesigner.files.wordpress.com/2012/11/0obs

(Note: route URLs in app.js are sometimes called “endpoints™)

localhost:3000/project/1
localhost:3000/project/2
localhost:3000/project/3

Call the project endpoint URL via AJAX
*What do | do?

‘When the user clicks on a particular project, call the endpoint URL
from the previous slide using $. get

‘Make sure you customize the URL based on the idNumber variable

‘Use console.log() to print out the URL that you are calling

‘Create an empty callback function for now; we’ll get there soon. It
should have an argument (e.g,, result) for the server response

Is it working?
‘Click on a project, then check the Javascript terminal to find the
URL you printed out. It should say “/project/|”,"/project/2”, etc.
‘Error: “Uncaught ReferenceError: [functionName] is not defined”

*Your callback function either doesn’t exist, or the name you gave to
the get function doesn’t match the actual name of the function

36

Write the callback function

‘What do | do?

‘console. log the response data to make sure it is correct

Is it working?
‘Click on a project and see if it outputs the correct data to the
console

-Common errors

‘The data is for the wrong project. Are you sure you are sending the
correct project ID number in the URL?

‘| don’t know where the data is coming from. Did you include a result
parameter to your callback function for the AJAX result?

37

Insert the project details into the page ()

‘What do | do?

‘Use jQuery to select the div where we’ll be inserting the content.
It has class .details, but make sure you're only selecting the one

that’s a descendent of the project div with the right ID. (Really
think through what kind of jQuery selector syntax will work here.)

‘Use jQuery’s html() to change the contents of the details div.
‘Test it by inserting debug text like “foo”
‘How do | know if it'’s working?

*Click on the project, and it should insert your debug text “foo”

‘Nothing is happening when | click.

‘Use the |S console to make sure you're selecting the right div.

38

Insert the project details into the page (2)

‘What do | do?

‘Create the HTML string to insert and mix in the results from the
AJAX call.You’ll want to include the image, a small header with the
date, and the summary.

‘Give the image the class detailsImage (we wrote a CSS rule)

‘Replace your debug text with the HI ML string
‘How do | know if it's working?

*Click on the project, and it should insert your project details

‘Nothing is happening when | click.

‘Look at the Javascript console for errors, and try printing out your
HTML string that you're trying to insert.

39

Now let’s make something cool happen
when the user clicks the “Colors!” button

Michael Bernstein

human-computer interaction - social computing - crowdsourcing

Colors!

Make the AJAX request

‘What do | do?

‘We will be placing our AJAX endpoint URL at /palette

‘When the user clicks on the “Colors!” button at the top of the
page, issue an AJAX GET request to the /palette URL.

‘The code should be very similar to what you wrote for the last
part of the lab.

‘How do | know if it'’s working?

‘When you click on the “Colors!” button, the Javascript console in
Chrome tells you that it can’t find the localhost:3000/palette URL.

41

Prepare the /palette endpoint

What do | do? Make sure you have three pieces of code to
create an endpoint at /palette:

|. Controller file palette.js — we have given you this
2. Import the controller file near the top of app.js
3. Define the route/URL at the bottom of app.js

‘How do | know if it'’s working?

‘Restart node.js and try to go to localhost:3000/palette. Make sure it
displays our debug string.

42

Return a color palette from the endpoint

‘What do | do?

‘Edit palette.js to return |[SON for the chosen palette. To do this,
first get rid of the res.send() line.Then,use res.json() and

pass it the]JSON object it should return.
‘Return the one randomly-chosen palette the code has selected.

‘How do | know if it’s working?

*‘Go to localhost:3000/palette and you should see JSON data
about a randomly-chosen color palette

43

Hook up your callback
What do | do?

‘Make the AJAX call whenever the user clicks the “Colors!” button

‘In the callback function, find the hex colors within the javascript
object that you receive from server. Put that array into var colors.

‘Use our provided Javascript below to apply those colors to the page
using jQuery’s css function ... copy and paste:

$('body’').css("background-color', colors[0]);
$('.thumbnail').css('background-color', colors[1l]);
$('hl, h2, h3, h4, h5, h5').css('color’', colors[2]);
$('p').css('color’, colors[3]);

$('.project img').css('opacity', .75);

* Tip: think hard about where each piece of code should go. Remember that AJAX is

“asynchronous,’ so which code runs in which order may be counter-intuitive. »

All set! Now try out your color disco by

clicking on the “Colors!” button repeatedly.

Michael Bernstein

human-computer interaction - social computing - crowdsourcing

Colors!

k

Projects

