
Human-Computer
Interaction Design
COGS120/CSE170 - “Intro. HCI”

Instructor: Philip Guo

Lab 5 - Integrating frontend and backend (2016-10-27)
by Michael Bernstein, Scott Klemmer, and Philip Guo

This lab connects what
you’ve learned in Labs 1 to 4

Git
HTML
CSS
JavaScript
Node.js

Today we put together Labs 1 to 4 …

 Browser

CSS for styling:
Lab 2

JavaScript for
interaction: Lab 3

HTML for page
structure: Lab 1

Frontend
development

 Server-side

Portfolio website

Backend
development

Express server-side web
framework for Node.js:
Lab 4

Data storage (future)

Ajax for updates
w/out reload: Lab 6

This entire lab is a practice
exercise: You will build a
dynamic web site

You will need this knowledge
to complete assignments A5
and beyond, so make sure
you understand this lab!

We’re creating a
social network site
for HCI friends.

Get the starter code (the same fork/clone drill)

�Fork the repository: https://github.com/pgbovine/lab5

�git	
 clone your forked repository into your introHCI
directory

7

https://github.com/pgbovine/lab5

Open lab5/data.json in your text editor

8

�We are linking this
JSON data file to
your controllers
�You can write to the
object and change it,
but it will revert
when you restart
your Node.js server,
since the server loads
from data.json
whenever it starts up.

Open lab5/routes/index.js

�We included a line at the top for you:  
var	
 data	
 =	
 require(‘../data.json’);

�This loads our JSON fake “database” file into the data
variable. This will get printed to the terminal console
via	
 console.log	
 whenever you load the page.

9

Start node.js

�cd	
 lab5 to enter the lab 5 directory from introHCI

�To start node: node	
 app.js

10

Verify that the basics work

Visit this URL: http://localhost:3000

11

Website in browser Terminal console output

http://localhost:3000

Remember: to see your code
changes, restart Node.js in
your terminal and reload the
page in your web browser
(yep, it’s tedious, we know)

Act One:
Connect JavaScript and CSS

Import JavaScript into your HTML
�What do I do?
�Import the JavaScript files into the HTML file (where is that file?)

�How do I do it?
�Hint: use <script> tags

�The HTML file you want lives in the views folder
�The Javascript files are in the public/js/ directory: jquery-1.11.0.js,
bootstrap.js, hci-friends.js. Import them in that order, because
bootstrap and hci-friends depend on jQuery. Think about what
their exact filenames should be in the <script> tags. (not intuitive!)

�How do I know if it’s working?
�“Javascript connected!” 

14

Import CSS into your HTML
�What do I do?
�Import the CSS files into the HTML file

�How do I do it?
�Use <link> tags

�CSS lives in the public/css/ directory: bootstrap.css, bootstrap-
theme.css, hci-friends.css. Import them in that order, because hci-
friends overwrites styles from the other two. Again, think carefully
about what their filenames should be.

�How do I know if it’s working?
�Check the fonts (Bootstrap)  
and colors (hci-friends)

15

Set up Bootstrap container for page content

�What do I do?
�Create the <div	
 class="container">…</div> in the
HTML file to surround the entire page’s content, which
will have Bootstrap automatically create margins

�What is a Bootstrap container?
�It is a div that your page content should go in
�How do I know if it’s working?
�Look for page margins on left & right

16

Act Two:
Render the friends

Stub out the HTML for one friend
�What do I do?
�Hand code one friend div directly into the
index web page, above the “Add a friend”
form. Don’t use template variables yet.
�It should look like the example to the right:
image, name, and description.
�A friend should have…
�Image: http://lorempixel.com/500/500/people
�Name: use a smaller header element, like h3
�Description text: normal paragraph text

�We recommend placing the friend
elements inside a parent div.

18

Pass the friend JSON to the template

�What do I do?
�Get the data variable from the require() statement in index.js, and
send it as an argument to res.render() in the index.js controller.

�You can pass data along directly, no need to wrap or change it. Its
contents will be accessible from within the template.
�Don’t forget to restart node.js when you make changes!

�How do I know if it’s working?
�Right now, there will be no feedback. We’ll use it in a moment.

19

Render all the friends into the page
�What do I do?
�Edit the template so it places the data you just passed it into the
HTML. Use the Handlebars language to access it.
�Write all the friends using an each block. Make sure you have
checked the property name in the JSON. How should you access it?
�Remember to restart node.js when you make changes.

�Common errors
�The friends are squished on top of each other. It looks bad. Try adding an
<hr> horizontal rule at the bottom of every friend div

�Nothing’s showing up. Try adding a debug property to the data and
see if you can access that, rather than the “friends” property. If you
don’t access the correct field, it will write out an empty string.

20

Reign in the images

�What do I do?
�Step 1) Write a CSS rule in hci-friends.css that sets the width for
the friend divs. It should set the maximum width for any friend.
Scope the CSS rule so that it applies to the entire friend div rather
than just the img.

�Step 2) Add the Bootstrap class img-­‐responsive to the images.
Otherwise they won’t respect the friend div’s width.
�For fun, Bootstrap’s img-­‐rounded adds rounded corners.

�Common errors
�I set the width on the containing div but the images are still big. Did you
set the img-­‐responsive class on the images themselves?

21

Our current state

22

Act Three:
Add interactivity

Listen to clicks on the friend names
�What do I do?
�Add a click listener on the friend name.
�Though it’s possible to add a click listener to any element, the
affordances are better if you use an <a> element. Wrap the name in
an <a> element and set the href to href="#"

�Then, select the names using jQuery in hci-friends.js  
and register a click listener. Adding a distinctive class to the friend
divs makes selection easier.

�I’m stuck!
�Think about the selector $("selector") you need to register the
click listener. Add extra CSS classes if it helps.

24

Replace the name with an anagram
�What do I do?
�Write Javascript so that, when the name is clicked, you replace the
name with an anagrammed version.
�Make sure to call preventDefault() in the click listener to that
the page doesn’t try to follow the link and reload (default behavior)
�Use $(this).text() to retrieve the current name from inside of
the click listener function
�Use anagrammedName(name) in hci-friends.js to return an
anagrammed version of the name
�See Lab 3 for details. Important key functions are $(this) and
text(newtext)

25

Our current state  
(which anagrams to
“Ornate structure”)

26

Act Four:
Make new friends

Try submitting the “Add friend” form now

�You should see the URL it wants to submit:  
 
 
 

�Error! There is no handler for the /add URL. So, you’ll
need to add a new controller to handle requests for
the /add URL

28

Register the route

�What do I do?
�Open app.js and add a require() statement near the line  
var	
 index	
 =	
 require('./routes/index')  
to load a new route that is called ./routes/add

�For consistency, store the result into var	
 add	
 =	
 require(

)

�We’ll add the functionality into routes/add.js in a moment

�How do I know if it’s working?
�Keep going, there’s one more slide…

29

Register the route (2)
�What do I do?
�Register the URL localhost:3000/add by including an app.get()
statement near the line  
app.get('/',	
 index.view)  
that registers a new route to /add via the function add.addFriend	

�Don’t worry yet about trying to capture the form’s variables

�How do I know if it’s working?
�Restart node.js. The node.js console should tell you that “yay,
addFriend just ran!”
�(Before, the node.js console would say code 404 for this URL: e.g.,
there is no controller registered for that URL.)

30

Create the controller

�What do I do?
�Open add.js inside the routes folder:  
exports.addFriend	
 =	
 function(req,	
 res)	
 {	
 ...	
 }	
 	

�Add your new friend’s data into the data	
 object
�see the next few slides for more details

�Render index.handlebars in the addFriend function

�How do I know if it’s working?
�Submitting the form should render the index page but with your
new friend listed on there (see the next few slides for details)

31

Construct the fake friend’s JSON object
�Forms by default send information in this format:  
 

�What should I do?
�Go access these variables in the controller, using  
req.query.name and req.query.description

�Create a new JSON object for the friend, following the format in
data.json. Use a fake imageURL property: http://
lorempixel.com/400/400/people	

�console.log() the object to make sure it looks correct

�How do I know if it’s working?
�The node.js console should output the object you want to add 32

Add the friend to the fake “database”

�What should I do?
�To add a new friend to the array of friends use Javascript’s push()
function for arrays. For example:  
 
data.friends.push(newFriend)

�The shared data is accessible via the data variable, since we
imported it using require() at the top of the file

�How do I know if it’s working?
�Check the next slide

33

Verify that the new
friend appears on the
home page

�push() adds to the end of an
array, so the friend will be at
the bottom of the page
�Since this is Javascript data,
it only remains until you
Ctrl-C in the console to
stop node.js

34

Stretch goal:  
Add additional social network-
style functionality to the site.

e.g., news feed 
e.g., profile pages for friends

