
Human-Computer 
Interaction Design
COGS120/CSE170 - “Intro. HCI” 

Instructor: Philip Guo 

Lab 1 - Version control and HTML (2016-09-29) 
by Michael Bernstein, Scott Klemmer, and Philip Guo



[Announce on Piazza] Before coming to lab 1: 

1. Create a GitHub account (if you don’t have one) 
2. Download Sublime Text 2 text editor for 
Windows/Mac https://www.sublimetext.com/2 
3. Download Git for Windows/Mac https://git-
scm.com/downloads 

Wi-fi may be slow in the classroom, so please 
download and try to install everything beforehand. 
It’s OK if you want to use your own text editor.

https://www.sublimetext.com/2
https://git-scm.com/downloads


Why does this class have a lab? 

For this class, coding is a means to an end 
(i.e., implementing your design ideas). Thus, 
we won’t go deep into the computer 
science concepts behind any technologies. 
These labs are just a starting point. You’ll 
probably need to learn more on your own.



Since this is not a coding class, you 
will not turn in labs for credit. 
However, concepts from labs will 
be tested on Exam 1 and Exam 2.



These labs will help you make 
a personal portfolio web site

�Never lose code: source control
�Get content on a page: static HTML and CSS
�Update that content dynamically: node.js and Javascript
�Analyze its use, make it mobile, make it look good



Let's try a new format for labs: 

1. I’ll give a mini-lecture on the slides for 20-30 
minutes. You can follow along or jump ahead at 
your own pace. [room will be mostly silent so that 
everyone can hear clearly] 

2. Then we will open it up for free-form lab work 
with TAs walking around to help. You can also 
come up to the podium to ask me for help too. 
[room will be louder]



Lab 1: Version control



Lab 1: Why use version control

My hard drive crashed!

I edited complicatedfile.js! @%$*!!!



Lab 1: Why use version control

�Back up your code safely in the cloud: GitHub
�Make checkpoints and push to the cloud: git
�Deal with team edits: git conflicts
�Make a web page: static HTML



Lab 1: Version control
� We will be learning to use the Git version control system.

“Git is a knife whose 
handle is also a knife”

Why learn it? Because it’s by 
far the most popular system in 
use today, especially in free and 
open source code. The GitHub 
website is a super convenient, 
free, and popular place to host 
your Git code repositories.



I can finish this lab in my sleep :(

�Feel free to run ahead and aim for the lab stretch goal:
�Turn the portfolio page scaffold into a fully functional 
web site with content from your previous projects. Must 
include images, descriptions, and multiple .html files.

�Even better: volunteer to help your classmates. Please be 
patient, though, since people come from all sorts of prior 
programming backgrounds.



You just lost me :(

�All speeds are welcome here. We really want everyone to 
get up to speed. Lab time (and office hours) are for you!

�Try first: ask your friends, help your friends
�Try second: raise your hand to summon a TA in lab
�Try third: come to our office hours for more help



Installing Git
�On Windows, make sure you can run Git Bash after you 
install Git. Find it in the start menu or desktop.

�On Mac OS, you may be prompted to install the Xcode 
development environment first, which can be annoying. 
Bypass that if you don’t want to download gigabytes of 
Xcode package to use Git. TAs can help. Google online for 
“git mac os x without xcode” to see resources such as:

�http://blog.bobbyallen.me/2014/03/07/how-to-install-git-
without-having-to-install-xcode-on-macosx/

http://blog.bobbyallen.me/2014/03/07/how-to-install-git-without-having-to-install-xcode-on-macosx/


Fork your first repository
�Find Lab 1 at: https://github.com/pgbovine/lab1.git
�Forking will copy the repository to your GitHub account



Copy your own git URL to the clipboard

Use https. Your Clone URL should look like this:
https://github.com/<YOUR GitHub USERNAME>/lab1.git

not this … https://github.com/pgbovine/lab1.git
(since this is my username)
Leave this browser tab open!



Open your terminal

�Mac OS X
�Applications → Utilities → Terminal
�Or search “Terminal” in Spotlight

�Windows: Git Bash
�Start Menu → Git → Git Bash

�Create a directory named “introHCI”
� Using the command-line: mkdir introHCI

�Change your directory to introHCI in the terminal:
� cd introHCI 

� Typing the pwd command should show introHCI



The parts of the command-line interface in 
your terminal application:

username:~/Documents/introHCI$ cd lab1

�Important terminal commands
�cd	  directoryname: change directory to directoryname

�ls: list all files and directories in the current directory

�pwd: which directory am I in?



git	  clone the repo inside of introHCI directory
(“repo” = Git repository)

�Your current directory should be introHCI (type pwd in the 
terminal to double-check). Then type git	  clone
�… add a space, then paste the URL you just copied. Make sure that 
URL has your own username in it, not pgbovine (that’s mine).



Windows: how do I paste into Git Bash?

�Click on the terminal icon in the upper left of the 
window: Edit, Paste. For a shortcut: Alt-spacebar, then 
e, then p. If that seems needlessly complicated, you 
can also enable QuickEdit mode by clicking on the 
terminal icon in the upper left of the window: 
Defaults(or Properties). Go to the Options tab and 
enable "QuickEdit Mode". Now you may paste by 
right-clicking in the terminal.

�Important terminal commands



Open your text editor

�Mac OS X
�Applications → Sublime Text 2
�Or search “Sublime Text 2” in Spotlight

�Windows
�Start Menu → Sublime Text 2

�Important terminal commands



Add your info into lab1/static/index.html

�This HTML will be rendered by the server



Browse to index.html using the file on 
your hard drive, open it from browser



Lab 1 stretch goal reminder
�Turn the portfolio page scaffold into a full web site and 
push it to GitHub
�It must contain:
�Content from your previous projects
�Images and descriptions
�Multiple .html files linked together via hyperlinks

�Even better: add styling



Set up Git so we can commit with sensible messages. Type 
in these commands in your terminal …

git	  config	  -‐-‐global	  user.name	  <YOUR	  NAME	  IN	  QUOTES>	  
git	  config	  -‐-‐global	  user.email	  <YOUR	  EMAIL	  IN	  QUOTES>	  
git	  config	  -‐-‐global	  push.default	  simple

For example, for Michael …



Version control with Git

git	  pull	  
git	  clone

git	  commit	  
revised text

git	  commit	  
add navigation

git	  push

Git server
(e.g., GitHub)

Your local client
(your own computer)



git	  status and git	  add

�git	  status 
git tells you which files would get committed
�git	  add	  filename 
Tells git that a file should be included in the commit



Commit, pull and then push

�git	  commit	  -‐m	  “Commit	  message”	  performs a local commit.  
It is not pushed to the server. Do this often: it’s a save point.
�git	  pull	  pulls (brings) in any new changes from the server
�git	  push	  pushes (backs up) all local commits to the git server  
 



GitHub website reflects your commit



Other basic git commands

�git	  commit	  -‐a	  -‐m	  "Commit	  message"	  performs a local commit 
of all files that have changed (instead of git	  add each of them)
�git	  log	  shows your history of commits
�git	  diff	  shows what changed but has not been committed 
 



So far: one-person version control

Git server
(e.g., GitHub)

git	  pull	  
git	  clone

git	  commit	  
new logo

git	  commit	  
revised text

git	  commit	  
add navigation

git	  push

Your local client
(your own computer)



Question: What’s the difference 
between Git and GitHub?



EVERYTHING AFTER THIS IS 
OPTIONAL (not on exam)



Multi-person version control

Git server

git	  pull

Your local client

Your partner



Merging and conflicts

�Please wait while we add a conflicting change to the 
upstream repository

�[we will manually change the contents of index.html so that 
it hopefully conflicts with yours]



Merging and conflicts
�Add the upstream repository as a remote server and 
merge it in to discover the conflict [this isn’t the most 
realistic scenario, but it’s a quick way to show conflicts]
� git remote add upstream https://github.com/pgbovine/lab1.git
� git pull upstream master

https://github.com/pgbovine/lab1.git


Resolving merge conflicts



Resolving merge conflicts

�Push the merged version back to the repository with 
git	  add, git	  commit, git	  pull	  and git	  push



Parting advice: avoid merge conflicts by 
coordinating with your teammates.

� It’s OK to both work on the same file at once, but make 
sure you’re not working “near” each other in the same file. 
Coordinate manually.

� The advantage of something like Google Docs is that you 
get real-time sync and multiple cursors so that you won’t 
have merge conflicts.


