
DESIGN AT LARGE
real-world, large scale
…and sometimes disruptive

Scott Klemmer

Tiphaine Henry

Evan Barosay

from the Lab…

…to the Wild

The journey to 8 million
users begins with a block
of wood

An anomaly or a strategy?

In 2000, Palm sold nearly 8 million
units and had a 76% share of the
PDA market.

Computer History Museum in Mountain View, CA courtesy of Michael Hicks’s
image on flickr

“If I wanted to check
the calendar I’d take
it out and press the
wooden button.”  
-Jeff Hawkins

Plywood Experience Sampling

Prototypes are postcards from the future

The successes are
tremendously
exciting

How do you ‘sketch’ a social computing environment?
Mike’s Burbn experience

If at first you don’t succeed…
From MVP to >400m active users

An anomaly or a strategy?

“Everyone designs who
devises courses of action
aimed at changing existing
situations into preferred ones.” 
— Herb Simon

Prototyping in real life

“I went with the whole parachute idea and what I had from the “This is the best approach for such a design...” “I am not a very good outside-the-box thinker, so I kinda just had “No... for some reason... this seems to be the only idea. There needs to be

Participants picked their concept early

How can we help more people swim?

Norman & Klemmer (2014) How design education must change

Experimentation
Matters

Creating design
principles

Thomke (2003) Norman & Klemmer (2014) How design education must change

Science wisdom:
“A year in the lab saves an
hour in the library”

Design melds physical, digital, and social worlds

A 
atoms

B 
bits

C 
culture

Hollan & Stornetta (1992) Beyond Being There

Beyond Being There

What is Design at Large? Three principles

• Traditional design makes things: teacups
and brochures. With Design at Large, the
thing is only a piece of the experience

• With traditional design, we don’t know
what happens when it leaves the factory.
With Design at Large, we do.

• With traditional design, the object stays
the same forever. Design at Large is
magic, creating always evolving
prototypes.

• Because solutions live in the real-world, 
Start with observation (define your system)

• Because what people say is different than what people do,  
Use that observation to uncover/articulate the real problem

• Because no one person has all the knowledge, 
Engage diverse stakeholders (all the people)

• Because the first idea is rarely the best,  
Encourage wild ideas: brainstorm widely w/multidisciplinary teams

• Because there’s no oracle for complex systems and solutions emerge
from surprising places, 
Get real quick, test and iterate

• Because designs change the setting, 
Prototype fast and furious, trying ideas in real situations

• Because what we see depends on what we know, 
Embrace Practice based evidence & Evidence based practice

Announcements
• Quiz 2 next Tuesday

HEURISTIC EVALUATION 
WHY AND HOW

Scott Klemmer
www.hci-class.org

Multiple ways to evaluate

Empirical Assess with real users
Formal Models and formulas to calculate

measures
Automated Software measures

Critique Expertise and heuristic feedback

27

http://www.etre.com/usability/inspection

When to get design critique?
• Before user testing. Don’t waste users on the small

stuff. Critique can identify minor issues that can be
resolved before testing, allowing users to focus on
the big issues.

• Before redesigning. Don’t throw out the baby with
the bathwater. Critique can help you learn what
works and what should change.

• When you know there are problems, but you need
evidence. Perhaps you've received complaints from
customers or found yourself stumbling around your
own site. Critique can help you articulate problems
and provide you with ammunition for redesign.

• Before release. Smooth off the rough edges.

http://www.etre.com/usability/inspection

Begin Review with
a Clear Goal

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Heuristic Evaluation
• Developed by Jakob Nielsen
• Helps find usability problems in a design
• Small set (3-5) of evaluators examine UI

• independently check for compliance with
usability principles (“heuristics”)

• different evaluators will find different
problems

• evaluators only communicate afterwards
• findings are then aggregated

• Can perform on working UI or sketches

http://www.useit.com/papers/heuristic

My somewhat revised names for Jakob Nielsen’s heuristics, http://www.useit.com/papers/heuristic

Ten Design Heuristics
• Show system status
• Familiar metaphors & language
• Control & freedom
• Consistency
• Error prevention
• Recognition over recall
• Flexibility & efficiency
• Aesthetic & minimalist design
• Recognize, diagnose, & recover

from errors
• Help

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Evaluators’ Process
• Step through design several times

• Examine details, flow, and architecture
• Consult list of usability principles
• ..and anything else that comes to mind

• Which principles?
• Nielsen’s “heuristics”
• Category-specific heuristics from  

e.g., design goals, competitive analysis, existing
designs

• Use violations to redesign/fix problems

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Why Multiple Evaluators?
• No evaluator finds everything
• Some find more than others

easyhard

successful

unsuccessful

PROBLEMS

EVALUATORS

http://www.useit.com/papers/heuristic

Decreasing Returns

problems found benefits / cost

• Caveat: graphs for a specific example

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Heuristic Eval: Cost-effective
• In one case: benefit-cost ratio of 48

• estimated benefit $500,000; cost $10,500
• value of each problem ~$15K
• how might we calculate this value?

• in-house -> productivity; open market -> sales

• Severe problems found more often
• Single evaluator achieves poor results

• only finds 35% of usability problems
• 5 evaluators find ~ 75% of problems

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Heuristics vs. User Testing
• Heuristic Evaluation often faster

• 1-2 hours each evaluator

• HE results come pre-interpreted
• User testing is more accurate (by def.)

• takes into account actual users and tasks
• HE may miss problems & find “false positives”

• Valuable to alternate methods
• find different problems
• don’t waste participants

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Phases of Heuristic Evaluation
1. Pre-evaluation training: give evaluators

needed domain knowledge and
information on the scenario

2. Evaluation: individuals evaluate and then
aggregate results

3. Severity rating: determine how severe
each problem is (priority). Can do first
individually and then as a group

4. Debriefing: review with design team

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

How-to: Heuristic Evaluation
• At least two passes for each evaluator

• first to get feel for flow and scope of system
• second to focus on specific elements

• If system is walk-up-and-use or evaluators
are domain experts, no assistance needed
• otherwise might supply evaluators with

scenarios

• Each evaluator produces list of problems
• explain why with reference to heuristic or other

information
• be specific and list each problem separately

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

How-to: Heuristic Evaluation
• Why separate listings for each violation?

• risk of repeating problematic aspect
• may not be possible to fix all problems

• Where problems may be found
• single location in UI
• two or more locations that need to be compared
• problem with overall structure of UI
• something is missing

• ambiguous with early prototypes; clarify in advance
• sometimes features are implied by design docs and
just haven’t been “implemented” – relax on those

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Severity Rating
• Independently estimate after review
• Allocate resources to fix problems
• Estimate need for more usability efforts
• Severity combines

• frequency
• impact
• persistence

http://www.useit.com/papers/heuristic

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Severity Ratings
0 - don’t agree that this is a usability problem
1 - cosmetic problem
2 - minor usability problem
3 - major usability problem; important to fix
4 - usability catastrophe; imperative to fix

41

http://www.useit.com/papers/heuristic

Courtesy Sebastien Robaszkiewicz, cs147 2011

Severity Ratings Example
• Issue: Unable to edit one’s weight
• Severity: 2
• Heuristics violated: User control and

freedom
• Description: when you open the app for

the first time, you have to enter your
weight, but you cannot update it. It could
be useful if you mistyped your weight, or
if one year or two after the first use of
the app, your weight has changed.

Jakob Nielsen, http://www.useit.com/papers/heuristic · Slide summary adapted from James Landay

Debriefing
• Conduct with evaluators, observers, and

development team members
• Discuss general characteristics of UI
• Suggest potential improvements to

address major usability problems
• Dev. team rates effort to fix
• Brainstorm solutions

http://www.useit.com/papers/heuristic

http://designlab.ucsd.edu

Scott Klemmer
 @DesignAtLarge

